Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.
نویسندگان
چکیده
We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin-rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin-rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin-rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.
منابع مشابه
Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).
We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and no...
متن کاملSpin-rotation and NMR shielding constants in HCl.
The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of (1)H(35)Cl are CCl = ...
متن کاملCharacterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br): An ab initio, DFT, NBO and AIM study
The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hy...
متن کاملThermodynamics, Solvents effects and 1H ,13C NMR Shielding :Theoretical studies of Adamantane
Some of the Adamantane properties were calculated in this study. Chemical shift, free energy ofsolvation, free energy of cavity formation, Henry's law constant, and other properties ofAdamantane in dry phase, three solvents and three temperatures have been calculated with Abinitio method base on density functional theory (DFT) at B3lyp/6-31g, B31yp/6-31g*, B3lyp/6-31+g* and B3lyp/6-31++g** leve...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 140 19 شماره
صفحات -
تاریخ انتشار 2014